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Dispersion Comparison for DSI- and
Tensor-Based Nonorthogonal FDTD

Hao Shi and James L. Drewniak

Abstract—An explicit formulation of the finite-difference time-
domain-discrete surface integral (FDTD-DSI) technique has al-
lowed a rigorous study of numerical dispersion for the method.
The study shows that the DSI- and tensor-based FDTD methods
do not have the same numerical dispersion relation. It also
clarifies the recently reported discrepancies in the dispersion
relation between the two approaches. This study also shows
that the tensor-based FDTD algorithm exhibits better dispersion
properties for a two-dimensional uniformly skewed mesh.

1. INTRODUCTION

INITE-difference time-domain (FDTD) [1]-[3] is a pow-

erful numerical technique for solving many electromag-
netic problems. The conventional FDTD Yee algorithm em-
ploying a rectangular grid is less efficient in handling compli-
cated geometries when accuracy is required. Nonorthogonal
FDTD methods that have been developed include the discrete
surface integral (DSI) [4] and tensor-based algorithms [5]; [6].
The numerical dispersion relation (NDR) for the Yee algorithm
is well understood; however, the behavior of the NDR for
nonorthogonal FDTD methods is less so. Due to the complex-
ity of algebra associated with the derivation of a NDR in an
arbitrary grid, a three-dimensional (3-D) or two-dimensional
(2-D) uniformly skewed grid is often employed. Ray has
provided an analytical formula for a general nonorthogonal
algorithm on a 2-D uniformly skewed mesh [7]. A general
formula for the NDR of the tensor-based FDTD method has
been given by Navarro et al, for a 3-D uniformly skewed
mesh [8]. When applied to a 2-D uniformly skewed mesh, the
NDR for the tensor-based FDTD [8] differs slightly from that
given by Ray [7]. Navarro er al., suggested a mistake in the
derivation of [7]. However, this study shows that both results
are correct and that the two methods in fact do not have the
same dispersion relation.

An explicit formalism of FDTD-DSI has been developed
[9] that allows a rigorous derivation of the NDR for the DSI
method. For a 2-D uniformly skewed mesh, the results are
consistent with those given by Ray [7]. Comparison of the
dispersion relations indicates that the DSI- and tensor-based
nonorthogonal FDTD methods behave distinctly, and the NDR
presented by Ray [7] is applicable to the DSI-based method,
while the formula given by Navarro et al., [8] is applicable
to the tensor-based method. Further, the tensor-based FDTD
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method exhibits less numerical dispersion than the FDTD-DSI
method in the special case of a 2-D uniformly skewed grid.

1I. DISPERSION FOR FDTD-DSI METHOD

A detailed description of the DSI method can be found in
the literature [4], [10], and only a brief summary is given
here. A structured grid with hexahedral cells shown in Fig. 1
is employed here for demonstration, although the DSI method
is generally applicable to unstructured grids. A secondary grid
is introduced by taking the center-of-mass points of all cells
in the primary grid (the initial grid) as nodes. The dotted
lines in Fig. 1 are the primary edges, : and the solid or dashed
lines are the secondary edges. The E-field is sampled along
the primary edges and the H-field along secondary edges.
The integral form of Ampere s law applied on a loop in the
secondary grid yields 2 5, < - 71, where 7 is the unit face normal
vector of a secondary cell-face. The effective face normal and
area can always be uniquely defined, even if the four nodal
points are nonplanar [9]. In general, a secondary face normal
vector will not be aligned with its corresponding primary edge,
as is the case for a Cartesian grid, complicating the F-field
time-marching scheme. First, Ampere’s law is applied in all
face-loops in the secondary grid to give -5’% - in the (secondary
grid) face normal direction. Then, correspondmg to each E—
field sampling Point P along a primary edge Lp, the
values at Point P’s nine (including the face Point P is dlrectly
associated with) neighboring secondary faces are used to yield
a vector quantity ( . E)|p thru an elaborate reconstruction and
Welghted—averagmg procedure [4]. 1Flnally, finite differencing
in time yields (5;)| p-Lp= EET&, and a time-marchin:,
equation for Ep results. The net consequence of the DSI
algorithm is that the time-marching equation of FEp is related
to Point P’s 20 neighboring magnetic field components.

An explicit FDTD-DSI algorithm for a structured grid has
been developed [9]. At any location with index [4, 7, k], the E-
field is represented by three scalar components {E1, Es, E3}.
The time-marching equation for one F-field component is

At 20
nt1 _ pmys s e n-+1/2
B (5,00 = BY 3 R + oy ;n,qﬂl,q M

where ¢ is the average value of permittivity for cell (¢, j, k),
and 7§, are geometric coefficients incorporating contribu-
tions from the 20 surrounding H field components. Similar
time-marching equations for the H-field components can be
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Fig. 1. A typical sampling point (FP) of electric field E and its 20
neighboring magnetic-field components.

Fig. 2. Cell configuration for a 3-D uniformly skewed grid.

obtained with geometric coefficients Tﬁ 4 incorporating con-
tributions from the 20 surrounding E-field components. The
{7500 q} coefficients are determined by the mesh geometry,
and explicit formulas are available [9]. For a 3-D uniformly
skewed mesh defined by cell dimensions {Al;, Als, Alz} and
angles between the basis vectors {19, 093,031} (as seen in
Fig. 2) 75, =10, =mqeforp=123 andg=1,2,...,20.

The relatlons for 7, , are then relatively simple, for example
1 COS 931

Ti,1 = ViasAlgAlg ) "9 71,5 = AVias AL AL ) 71,13 =
1 (cosem _ cos&al) and 7 - 1 cos b1

4Via3Aly Alg Als ? A" A 17}7 T 4Viaa Al Alg

Los 9?1), . where V-123 = ll . (lz X lg) = (All . Alz . Alg)

(1 cos? 012 —cos? 0a3 —cos? 31 +2 cos 01 cos 23 cos 31 ) />

is the unit cell volume.

Von Neumann’s approach [11] is employed with the explicit
FDTD-DSI formulation to analyze the dispersion properties of
the algonthm For a monochromatic plane wave with propaga-
tion vector k and frequency w numerically propagating through
the mesh, a time-harmonic solution for a field component is
Eq(i,j,k) = E7(3, 7, k)e JWt=F® Let t = nAl, and, 7 =
’I,Allll -I-jAlle +kAl313, ]{} = ]{7111 —I—]\,glg —‘rkglg Upon insert-
ing the steady-state solution for all six field components into
the time-marching equations of the explicit FDTD-DSI, a set
of linear simultaneous equations in {9, B3, EJ, HY, HY, H}
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result [9]. Since {E?, ES,ES, HY, H) HJ} are in general
nonzero, the determinant must vanish, which yields the nu-
merical dispersion relation. For the 2-D uniformly skewed grid
analyzed by Ray, 33 = 031 = 90°, ks = 0, and the NDR is

1 <in? wAt
(A2 ™™\ 2
1

sin 9122

y 1 2 kAl cosa n 1
(AL )z° T2 (Aly)?
kAly cos(a — 912)} 1 cos by

2 2 AL AL

x sin? [
x sin(kAl; cos a) - sin[kAl; cos(a — 912)]}. 2

where the relations k1 + kocosfin — kcosa, and ks +
k1 cosfiz — Ecos(a — 012) are used, with o the angle of
direction of wave propagation with respect to the +z; axis,
as seen in Fig. 2. Equation (2) is identical to that given by
Ray [7].

HI. COMPARISON BETWEEN THE NUMERICAL DISPERSION
OF FDTD-DSI AND FDTD-TENSOR BASED METHODS

The general NDR for the tensor-based nonorthogonal algo-

rithm is
Z g% sin ( ) sin (k23> (3)
v=1,7=1

in terms of the conjugate metric tensor and the covariant
components of £ [6], [8]. In a 2-D uniformly skewed mesh,
(3) can be simplified as

1 . g [ WAL
canz ™ \ 72

sin? QwAt

(cAt)?

_ 1
B sin 9122
o 1 sin? kAl cos o
(Aly)? 2
kAly cos(a — 612) cos 12
2 2 12) | 1
T AR [ 2 } AL AL
X sin (%kAll cos a)
|1
-sin {ikAb cos(a — 012)} } €Y

The NDR’s (2) and (4) for the two FDTD methods differ
only in the last term on the right-hand sides. The last term of
the NDR for the DSI-based FDTD method can be written as

sin (%kAll cos oz)

COS 912

sin? B15Al; Aly
X sin Bk‘Alg cos(a — 912)]

X COS (%kAll cos a) cos BkAh cos(a — 012)} (5)
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Fig. 3. Normalized phase velocity vs. the normalized grid spacing for o = 0,
8 = 45°(Q), 60°(0), 75°(¢), and 90°(A). The filled A’s are exactly on
top of the open A’s. cAt/Al = 0.5.
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Fig. 4. Normalized phase velocity versus «. 6 = 45°((), 60°(0),
75°(¢), and 90°(A). The filled A’s are exactly on top of the open A’s.
cAt/Al = 0.5, and Alf/Xo = 0.1.

and the real difference with that for the tensor-based FDTD
method is a multiplier

A =cos (%kAll cos a) cos I:%kAlg cos(a — 012):| . (6)

When o = 90° or @ = 015 £+ 90°, ie., for waves propagating
normal to one of the grid axes, the last term in the NDR
for both methods vanishes, and the tensor-based FDTD and
FDTD-DSI methods have the same NDR. The normalized
phase velocity v,/c is plotted versus the normalized grid
spacing Al/Ag by Ray and Navarro et al. for varying mesh
skewness. When Al/Ag — 0, v,/c — 1 and the continuous
dispersion relation is recovered.

In most cases A # 0, and the tensor-based FDTD and
FDTD-DSI have different NDR’s. The normalized phase
velocity is plotted versus the normalized grid spacing in Fig.
3 with an angle of propagation o = 0 for several values
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of #. In Figs. 3 and 4, the filled and open symbols are for
the tensor-based and DSI-based FDTD methods, respectively.
Fig. 3 illustrates that the DSI- and tensor-based methods
have significantly different dispersion characteristics. The DSI-
based method is sensitive to a change of §. For § = 45°
and o = 0°, the normalized phase velocity for Al/X\g = 0.1
deviates as much as 5% from unity. Conversely, the tensor-
based method is less sensitive to a change in 6, with a deviation
of the normalized phase velocity from unity of about 1% for
Al/Ao = 0.1. The normalized phase velocity is plotted versus
o in Fig. 4 for several values of § and Al/A = 0.1. The
maximum deviation of the normalized phase velocity from
unity is about 7% for the DSI-based method and 0.5% for the
tensor-based method. Overall, these results indicate that the
FDTD tensor-based method exhibits less dispersion than the
FDTD DSI-based method for a 2-D uniformly skewed grid.

IV. CONCLUSION

This study has demonstrated that the tensor- and DSI-based
nonorthogonal FDTD methods do not have the same NDR.
The NDR presented by Ray [7] is correct for DSI-based
FDTD method, while the NDR presented by Navatro et al.
[8] is correct for the tensor-based FDTD method. The tensor-
based FDTD method exhibits less numerical dispersion than
that of the DSI-based method for the 2-D uniformly skewed
mesh studied, and similar results might be expected in 3-D.
The DSI method, however, is very general and applicable
to an unstructured mesh. Improvements in the NDR of the
DSI method might be obtained by modifying the vector
reconstruction and averaging scheme of the algorithm.
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