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Abstract-An explicit formulation of the finite-difference time-

domain-discrete surface integral (FDTD-DSI) technique has al-
lowed a rigorous study of numerical dispersion for the method.
The study shows that the DSI- and tensor-based FDTD methods

do not have tlhe same numerical dispersion relation. It also
clarifies the recently reported discrepancies in the dispersion
relation between the two approaches. This study also shows
that the tensor-based FDTD algorithm exhibita better dispersion
properties for a two-dimensional uniformly skewed mesh.

I. INTRODUCTION

F INITE-difference time-domain (FDTD) [1]–[3] is a pow-

erful numerical technique for solving many electromag-

netic problems. The conventional FDTD Yee algorithm em-

ploying a rectangular grid is less efficient in handling compli-

cated geometries when accuracy is required. Nonorthogonal

FDTD methods that have been developed include the discrete

surface integral (DSI) [4] and tensor-based algorithms [5], [6].

The numerical dispersion relation (NDR) for the Yee algorithm

is well understood; however, the behavior of the NDR for

nonorthogonal FDTD methods is less so. Due to the complex-

ity of algebra associated with the derivation of a NDR in an

arbitrary grid, a three-dimensional (3-D) or two-dimensional

(2-D) uniformly skewed grid is often employed. Ray has

provided an analytical formula for a general nonorthogonal

algorithm on a 2-D uniformly skewed mesh [7]. A general

formula for the NDR of the tensor-based FDTD method has

been given by Navarro et al., for a 3-D uniformly skewed

mesh [8]. When applied to a 2-D uniformly skewed mesh, the

NDR for the tensor-based FDTD [8] differs slightly from that

given by Ray [7]. Navarro et al., suggested a mistake in the

derivation of [7]. However, this study shows that both results

are correct and that the two methods in fact do not have the

same dispersion relation.

An explicit formalism of FDTD-DSI has been developed

[9] that allows a rigorous derivation of the NDR for the DSI
method. For a 2-D uniformly skewed mesh, the results are

consistent with those given by Ray [7]. Comparison of the

dispersion relations indicates that the DSI- and tensor-based

nonorthogonal FDTD methods behave distinctly, and the NDR

presented by Ray [7] is applicable to the DSI-based method,

while the formula given by Navarro et al., [8] is applicable

to the tensor-based method. Further, the tensor-based FDTD
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method exhibits less numerical dispersion than the FDTD-DSI

method in the special case of a 2-D uniformly skewed grid.

II. DISPERSION FOR FDTD–DSI[ METHOD

A detailed description of the DSI method can be found in

the literature [4], [10], and only a brief summary is given

here. A structured grid with hexahedral cells shown in Fig. 1

is employed here for demonstration, although the DSI method

is generally applicable to unstructured grids. A secondary grid

is introduced by taking the center-of-mass points of all cells

in the primary grid (the initial grid) as nodes. The dotted

lines in Fig. 1 are the primary edges, and the solid or dashed

lines are the secondary edges: The ~-field is sampled along

the primary edges and the H-field along secondary edges.

The integral form of Ampere’s law applied on a loop in the

secondary grid yields ~~ . ii, where ii is lthe unit face normal

vector of a secondary cell-face. The effective face normal and

area can always be uniquely defined, even if the four nodal

points are nonpkmar [91. In general, a secondary face normal

vector will not be aligned with its corresponding primary edge,

as is the case for a Cartesian grid, complicating the ~-field

time-marching scheme. First, Ampere’s law is applied in all

face-loops in the secondary grid to give ~: .fi in the (second?

grid) face normal direction. Then, corresponding to eac~ E-

field sampling Point P along a primary edge Lp, the & - ii

values at Point P’s nine (including the face Point P is directly

associated with) neighboring secondary faces are used to yield

a vector quantity (~) IP thruan elaboratereconstruction@

weighted-averaging procedure ~4~1 :EnnO, finite differencing
.

in time yields (~) I~ . fiP = P *t P , and a time-marchim,

equation for EP results. The net consequence of the D!N

algorithm is that the time-marching equation of EF is related

to Point P’s 20 neighboring magnetic field components.

An explicit FDTD-DS1 algorithm for a structured grid h:s

been developed [9]. At any location with index [i, j, k], the E-

field is represented by ihree scalar components {El, Ez, ~3}.

The time-marching equation for one E-field component is

where Cl is the average vahte of permittivity for cell (z, j, k),

and r? ~ are geometric coefficients incorporating contribu-

tions from the 20 surrounding fi-field (components. Similar

time-marching equations for the E-field components can be

1051–8207/96$05.00@ 1996 IEEE
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Fig. 1. A typical samplmg point (p) of electric field ~ and its 20
neighboring magnetic-field components.
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Fig. 2. Cell configuration for a 3-D uniformly skewed grid,

obtained with geometric coefficients r~~ incorporating con-

tributions from the 20 surrounding E-field components. The

{~:,q, &} coefficients are determined by the mesh geometry,

and explicit formulas are available [9]. For a 3-D uniformly

skewed mesh defined by cell dimensions {All, A12, A13 } and

angles between the basis vectors {012, @23, f?31 } (as seen in

Fig. 2) ~j,~ = ~~,g = 7P,g forp=l,2,3, andq=l,2, . . ..2O.

The relations for Tp,q are then relatively simple, for example

71,1 = 1 Cos 631

v~~~Al~N~ J “ “ “ ~ ‘1>5 = 4V123ZM1A12 ~“ “ “ ~ 7-1113 =

*(*- ~),.:. ydn:7 = &(~-

*), . . . where V1Z3 = 11. (lZ x 13) = (All . Alz . AZ,)

(1–COS’ 1912-Cos’ f3,3 -Cos’ & +2 Cos o~~Cos 023 Cos6q1)’/’

is the unit cell volume.

Von Neumann’s approach [11] is employed with the explicit

FDTD-DSI formulation to analyze the dispersion properties of

the algorith~. For a monochromatic plane wave with propaga-

tion vector k and frequency w numerically propagating through

the mesh, a time-harmonic solution for a field component is

,?lI(i, j, k) = ~~(i,j, k)eJ(Wt–z”FJ. Let t = nAt, and, F =

iAll~ +jA121~ +kA13(3, ~ = /cl& +k2& +lc3f3. Upon insert-

ing the steady-state solution for all six field components into

the time-marching equations of the explicit FDTD–DSI, a set

of linear simultaneous equations in {E!, E;, -@, H!, H;, H: }

result [9]. Since {E?, E), E!, H!, H;. Hj} are in general

nonzero, the determinant must vanish, which yields the nu-

merical dispersion relation. For the 2-D uniformly skewed grid

analyzed by Ray, 6’23 = 031 = 90°, k3 = O, and the NDR is

1 ()wAt
(cAt)2 ‘in2~

1
—

sin 0122

x
{ ‘sin2(k:’1~”) +&Y(A11)2

[

x sin2 kAlz COS(cl – ~~~) 11 Cos$12

2 2 A11A12

}
x sin(kAll cos a) . sin[kAlz cos(a – 012)] . (2)

where the relations kl + k2 cos 6’12 ~ k cos a, and k2 +

kl cos 912 ~ k cos(a – 612) are used, with a the angle of

direction of wave propagation with respect to the +21 axis,

as seen in Fig. 2. Equation (2) is identical to that given by

Ray [7].

III. COMPARISON BETWEEN THE NUMERICAL DISPERSION

OF FDTD-DSI AND FDTD-TENsoR BASED METHODS

The general NDR for the tensor-based nonorthogonal algo-

rithm is

sin2 ( +wAt)

(cAt)2 = ~ ‘i’sin(:)sin($) ‘3)t=l,j=l

in terms of the conjugate metric tensor and the covariant

components of ~ [6], [8]. In a 2-D uniformly skewed mesh,

(3) can be simplified as

1 ()wAt
(c&)2 ‘in2 ~

1
—

sin 0122

x

{ ‘sin2(kA’l~Os”)(A11)2

1
+—

[

kA1.2 COS(CI! – 81Z) _ z COS$12

(~~2)2 ‘in2 2 1 Al~A12

‘sin(+AzlcOsa)
. sin

[ 1}:kA12 COS(~ – f312) . (4)

The NDR’s (2) and (4) for the two FDTD methods differ

only in the last term on the right-hand sides. The last term of

the NDR for the DSI-based FDTD method can be written as

–2
Cos $12

sin2 ~lxAllAIz ‘in(:kAzlcOsa)

X sin
[
;kA.12 Cos(o! – 012)1

‘cOs(~kAz’cOsa)c0s[:kAz2c0s(a‘5)
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Fig. 3. Normalizedphasevelocityvs. thenormalizedgrid spacingfor a = O,
0 = 45°(()), 600(0), 75°(o), and 90°(A). The filled A’s are exactly on
top of the open A’s, cAt/Al = 0.5.
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Fig. 4. Nornmhzed phase velocity versus a. @ = 45° (0), 60° (D),
75° (o), and 90° (A). The tilled A’s are exactly on top of the open A’s.

cAt/Al = 0.5, and A1/)io = 0.1.

and the real difference with that for the tensor-based FDTD

method is a multiplier

‘=cOs(+Az’cOsa)cOs[+z’cOs’a-o’2’l‘6)
When a = 90° or a = i912+ 90°, i.e., for waves propagating

normal to one of the grid axes, the last term in the NDR

for both methods vanishes, and the tensor-based FDTD and

FDTD-DSI methods have the same NDR. The normalized

phase velocity WP/c is plotted versus the normalized grid

spacing A1/~o by Ray and Navarro et al. for varying mesh

skewness. When Al/A. ~ O, VP/c ~ 1 and the continuous

dispersion relation is recovered.

In most cases A # O, and the tensor-based FDTD and

FDTD-DSI have different NDR’s. The normalized phase

velocity is plotted versus the normalized grid spacing in Fig.

3 with an angle of propagation a = O for several values

of 6. In Figs. 3 and 4, the filled and open symbols are for

the tensor-based and DS1-based FDTD methods, respectively.

Fig. 3 illustrates that the DSI- and tensor-based methods

have significantly different dispersion characteristics. The DSI-

based method is sensitive to a change of 0. For 6 = 45°

and a = 0°, the normalized phase veloci~~ for Al/A. = 0.1

deviates as much as 590 from unity. Conversely, the tensor-

based method is less sensitive to a change in, 19,with a deviation

of the normalized phase velocity from unity of about 1YO for

A1/)10 = 0.1. The normalized phase velocity is plotted versus

a in Fig. 4 for several values of d and A1/J = 0.1. The

maximum deviation of the normalized phase velocity from

unity is about 770 for the DSI-based method and 0.5’%0for the

tensor-based method. Overall, these results indicate that the

FDTD tensor-based method exhibits less dispersion than the

FDTD DSI-based method for a 2-D uniformly skewed grid.

IV. CONCLUSION

This study has demonstrated that the tensor- and DSI-based

nonorthogonal FDTD methods do not hare the same NDR.

The NDR presented by Ray [7] is correct for DSI-based

FDTD method, while the NDR presented by Navarro et al.

[8] is correct for the tensor-based FDTD method. The tensor-

based FDTD method exhibits less numerical dispersion than

that of the DSI-based method for the 2-D uniformly skewed

mesh studied, and similar results might be expected in 3-D.

The DSI method, however, is very general and applicable

to an unstructured mesh. Improvements in the NDR of the

DSI method might be obtained by modifying the vector

reconstruction and averaging scheme of the algorithm.
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